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Experimental  data charac ter iz ing  the switching phenomenon in oxidized vanadium are  p r e -  
sented. In order  to explain the switching phenomenon thermal  models of the "cr i t ica l  t em-  
pera ture"  and " the rmis to ry"  types a re  introduced. 

Thermal  instability is often the cause of breakdown in die lect r ics  and semiconductors  subject to the 
influence of an e lec t r ic  field. 

At the instant at which the Joule power evolved in the sample under the influence of an e lectr ic  cur -  
rent  exceeds the rate  of heat dissipation ( transfer  to the ambient), an avalanche-l ike r i se  in t empera tu re  
occurs~ The unlimited r i se  in current  associa ted  with the exponential fall in the res i s tance  of the dielec-  
t r i c  or semiconductor  resul t ing from the r i se  in t empera tu re  leads to the breakdown of the mater ia l .  If 
the breakdown is revers ib le ,  it may be put to pract ica l  use.  

FQr example, in the case of t he rmis to r s  breakdown leads to the development of an S-shaped v o l t -  
ampere  charac te r i s t i c ,  such as that i l lustrated in Fig. 1; this is called the " thermis tor"  effect [1, 2]. 

In the recent  years  many mater ia ls  with an S-shaped v o l t - a m p e r e  cha rac te r i s t i c  have been found. 
These mater ia ls  a re  used for making so-ca l led  "switching" cells or elements,  and the r e v e r s i b l e - b r e a k - -  
down phenomenon is called the "switching effect" [3]. In many such elements (which have found pract ica l  
se rv ice  in computing technology and microe lec t ronics )  the cause of the switching phenomenon is the " ther -  
mis to r  effect." 

Switching elements composed of vanadium dioxide VO 2 [4] a re  of par t icu lar  interest .  This mater ia l  
undergoes a phase t rans i ton at 70~ changing f rom the semiconducting (below 70 ~ to the metal l ic  state 
(above 70~ accompanied by a sharp jump in res i s tance  (up to five orders  of magnitude) [5]. 

The existence of a jump in res i s tance  at 70~ is due to the specific cha rac te r  of the switching prop-  
er t ies  in VO 2 e lements .  In these elements the Joule power only heats the sample  to the phase- t rans i t ion  
t empera tu re .  There  is thus no superheating in VO 2 (superheating is very  substantial  in mater ia ls  having 
no such phase transit ion),  and this has the effect that VO 2 elements exhibit bet ter  switching charac te r i s t i cs  
and have a longer se rv ice  life than those made of other mater ia l s .  The model descr ibing this effect is 
called the "cr i t ica l  t empera ture"  model [6, 7]. 

Among the large number of different kinds of mater ia ls  exhibiting the switching effect, one of the 
latest proposed is vanadium foil pre l iminar i ly  subjected to a i r  oxidation [8]. Elements based on this kind 
of foil a re  par t icu lar ly  simple to make and may act as both switching elements and inductances in mic ro -  
e lectronic  c i rcui ts  [9]. 

A mechanism was proposed in the lat ter  paper  for the switching effect in this mater ia l .  According 
to Yu and Fisher  [9], all the observed switching laws may be explained as being due to the " the rmis to r  
effect." Our own investigations d isagree  with Yu and F isher  [8, 9] as regards  both the experimental  data 

�9 and their  possible interpretat ion.  We ourselves  studied the switching effect in vanadium foil subjected to 
a i r  oxidation at 480~ The samples were square  in shape, cut f rom vanadium foil 25 # thick. 
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Fig, 1. V o l t - a m p e r e  
c h a r a c t e r i s t i c  of ox i -  
dized vanadium foil. I ,  
in mA; U, in V. 

A typica l  v o l t - a m p e r e  c h a r a c t e r i s t i c  of a s ample  pos se s s ing  the switching effect  is p resen ted  in 
Fig. 1. In record ing  the v o l t , a m p e r e  c h a r a c t e r i s t i c  of used sprung copper  contacts  with a contact a r e a  
of 1 m m  2. The r e s i s t a n c e  of s am p l e s  made in this way var ied  f r o m  s e v e r a l  ohms to tens of ki loohms,  de-  
pending on the oxidation per iod .  Depending on the r e s i s t a n c e  of the s ample s ,  the switching vol tage  va r i ed  
f r o m  one to s e v e r a l  tens of vol ts .  

The dependence of the switching vol tage Us on the r e s i s t a n c e  of the l aye r  R at r oom t e m p e r a t u r e  was 
of the Us ~ ~]-R type.  We see  f r o m  Fig. 2, that  d ive rgences  f r o m  this re la t ionship  develop at low r e s i s -  
t ances .  It should be  noted that  in s am p l e s  p r e p a r e d  in this way the switching effect  only began f rom a c e r -  
ta in  l imit ing r e s i s t a n c e ,  of the o rde r  of tens of ohms;  below this no switching effect  occur red .  

The t e m p e r a t u r e  dependence of the r e s i s t a n c e  of l ow- re s i s t i v i t y  oxidized vanadium foil exhibited a 
jump in r e s i s t a n c e  at  50-70~ ( cha rac t e r i s t i c  of the VO 2 m e t a l - s e m i c o n d u c t o r  phase  t ransi t ion) ,  as well  
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Fig. 2 :Fig. 3 

Fig.  2. Switching voltage as a function of the square  root  of s a m -  
ple  r e s i s t a n c e  at  r o o m  t e m p e r a t u r e  (R300) �9 (U s,  V; 1R, k ~; J-~300K, 
(k~!/2) .  Continuous line, calculat ion;  points,  exper imenta l .  

Fig. 3. T e m p e r a t u r e  dependence of the r e s i s t a n c e  of h i g h - r e s i s -  
t iv i ty  (curve 1) and l ow - re s i s t i v i t y  (curve 2} samples  (T, ~ 
Conductivity ac t iva t ion  energ ies  0.2 and 0.09 eV for  curves  1 and 
2, r e spec t ive ly .  
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Fig. 4. Temperature dependence 

of the switching voltage (I, resis- 

tance of the 26-k~2 sample, 2) 16, 

3) 13, 4) 500, 5) 200) (a), and 
t e m p e r a t u r e  dependence of the 
switching voltage bor rowed  f rom 
[7] (i) U s ~ T  o exp (E/2kT0); 
II) Us ~ ( T k - -  T0)i/2). T i n ~  

as t e m p e r a t u r e  h y s t e r e s i s  (Fig. 3) [5]. At t e m p e r a t u r e s  below 
50~ the t e m p e r a t u r e  dependence of the l o w - r e s i s t i v i t y  samples  
bo re  an exponential  c h a r a c t e r .  

For  h igh - r e s i s t i v i t y  s amp le s  the t e m p e r a t u r e  dependence of 
the r e s i s t a n c e  had an exponential  c h a r a c t e r  over  the whole t e m -  
p e r a t u r e  range  studied, and no h y s t e r e s i s  appea red  (Fig. 3). 

The ac t iva t ion  energy  of the s amp le s  studied was marked ly  
dependent  on the t ime  of oxidation. Fo r  nominal  r e s i s t a n c e s  be -  
tween tens of ohms and tens of ki loohms,  the ac t ivat ion energy 
r o s e  f r o m  0.09 to 0.2 eV. The th ickness  of the oxide l aye r s  mean-  
while var ied  f r o m  (3.0 ~ 1) ,~t for  l ow- re s i s t i v i t y  s amp le s  to (5.0 

1) p for  those of the h igh - r e s i s t i v i t y  type.  

We r eco rded  the switching voltage as a function of the a m -  
bient  t e m p e r a t u r e  for  oxidized vandium foil with va r io  us nominal  
r e s i s t a n c e s .  The expe r imen ta l  data a r e  p resen ted  in Fig. 4a. We 
see  f r o m  Fig.  4a that  above r o o m  t e m p e r a t u r e  the re la t ionship  
between the switching voltage and the ambient  t e m p e r a t u r e  is of 
the s a m e  c h a r a c t e r  in both low- and h igh - r e s i s t i v i t y  s amp le s .  
The t e m p e r a t u r e  at which the switching effect  vanishes  comple te ly  
is ~60~ We note that this is c lose  to the phase - t r an s i t i on  t e m -  
p e r a t u r e  of VO2. 

Below r o o m  t e m p e r a t u r e  the re la t ionship  between the switch-  
ing vol tage and the ambien t  t e m p e r a t u r e  const i tutes  a family of 
curves ,  with the s amp le  r e s i s t a n c e  act ing as a p a r a m e t e r .  

Discuss ion  of the Exper imenta l  ]Results, The foregoing ex-  
p e r i m e n t a l  r e su l t s  may be explained within the f r a m e w o r k  of the 
two t h e r m a l  models  p roposed  for  desc r ib ing  the switching p r o p e r -  
t ies  of VO 2 i n  [6, 7], the "c r i t i ca l  t e m p e r a t u r e "  effect  being ope ra -  
t ive  above r o o m  t e m p e r a t u r e  and the " t h e r m i s t o r  model" below. 

1. As a l r eady  indicated, the "c r i t i ca l  t e m p e r a t u r e "  model 
a s s u m e s  that,  as  a r e su l t  of the heating of the sample  by the 

Joule t he rma l  energy,  the p h a s e - t r a n s i t i o n  t e m p e r a t u r e  of VO 2 (~70~ is reached,  and the sample  r e s i s -  
tance changes ve ry  sharp ly .  For  this model  the switching voltage is 

2 a(Tk--To) exp( AE ) U s = % . - -~ - -  . ( I )  

2. In the " t h e r m i s t o r  model" [10], it is cons idered  that,  under  the act ion of Joule heat ,  the t e m -  
p e r a t u r e  of the m a t e r i a l  i n c r e a s e s  in such a way that,  owing to the exponential  c h a r a c t e r  of the e lec t r i ca l  
conductivity,  the r e s i s t a n c e  of the sample  falls  sharp ly  and the vo l t - -  a m p e r e  c h a r a c t e r i s t i c  becomes  S- 
shaped.  The t e m p e r a t u r e  dependence of the switching vol tage is then 

----- ~z - -  exp -- 1 (2) s %AE 

The t e m p e r a t u r e  dependence of the VO 2 switching voltage actual ly  observed  may readi ly  be explained 
by these  two mechan i sms ,  the " t h e r m i s t o r  model"  being opera t ive  below room t e m p e r a t u r e  and the " c r i t -  
ical  t e m p e r a t u r e "  model  above, as in Fig. 4b. 

3. The e x p e r i m e n t a l r e s u l t s  obtained in the p re sen t  inves t igat ion may readi ly  be explained on the 
bas i s  of these  two models  on allowing for  the change in conductivity ac t iva t ion  energy  which occurs  during 
the oxidation of the foil. 

Above r o o m  t e m p e r a t u r e  we have Us ~ (Tk --  T0) 1/2 for  every  one of the s amples  studied, this being 
a characteristic relationship for the "critical temperature" model, as in Eq. (i) (compare Figs. 4a and 

4b). Moreover, for this model we have Us ~ fR, as in Eq. (I). In Fig. 2 the continuous line illustrates 
our calculated relationship between U s and fR. We see that only in the low-resistance range is there any 
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deviat ion f r o m  this re la t ionship ,  and this may  b e  a t t r ibuted to the smal l  thickness  of the l aye r  on the low- 
r e s i s t i v i t y  s a m p l e s .  It is well  known that in thin s amples  contact phenomena may play an apprec iab le  

�9 ro le ,  and that  as a r e su l t  of this the switching cha rac t e r i s t i c s  deviate  f r o m  those  p red ic ted  by  pure ly  
t h e r m a l  laws [11]. 

The behav io r  of the a i r -ox id i zed  vanadium foil may be explained by the p r e s e n c e  of VO 2 in the oxi- 
dized l aye r ,  in addit ion to other  oxides.  This  is conf i rmed by ana lys i s  based  on x - r a y  diffract ion.  The 
VO 2 phase ,  in fact ,  a p p e a r s  in both high- and low- res i s t i v i ty  s amp le s .  Apparent ly ,  the VO 2 phase  plays  
a leading pa r t  in the switching p r o p e r t i e s  of such foils above r o o m  t e m p e r a t u r e  in both high- and low- 
r e s i s t i v i t y  s amp l e s ,  although in the h igh - r e s i s t i v i t y  s amples  the e lec t r i ca l  p rope r t i e s  of the phase  fail to 
appea r  at  lo~v v o l t a g e s  (no t e m p e r a t u r e  hys t e r e s i s ) ,  in a g r e e m e n t  with the r e su l t s  p resen ted  in [8]. 

r 

Below r o o m  t e m p e r a t u r e  the behav io r  of the high- and low- re s i s t i v i t y  s amples  di f fers  considerably .  
For  the h igh - r e s i s t i v i t y  s a m p l e s  Us ~ exp (AE/2kT0). This  behav io r  is desc r ibed  by the ord inary  t h e r -  
m i s t o r  model ,  as  in Eq. (2). The behav io r  of the low- res i s t i v i ty  s ample s ,  on the other hand, may be 
explained within the f r a m e w o r k  of the "c r i t i ca l  t e m p e r a t u r e "  model ,  a f t e r  allowing for  the changes taking 
p lace  in the conductivity ac t iva t ion  energy .  The fall in act ivat ion energy  in the l ow- re s i s t i v i t y  s ample s ,  
in fact ,  shif ts  the t e m p e r a t u r e  T01 of the t r ans i t ion  f rom the " t h e r m i s t o r  model" to the "c r i t i ca l  t e m p e r a -  
tu re"  model  in the l o w - t e m p e r a t u r e  d i rec t ion.  Actually,  if we r e m e m b e r  that  for  Tk  = 330~ and T o 
= 300~ the exponential  t e r m s  in Eqs.  (1) and (2) a r e  approx imate ly  equal, we obtain the following equa- 
t ion for the t e m p e r a t u r e  of the t r ans i t ion  f r o m  the " t h e r m i s t o r  model" to the "c r i t i ca l  t e m p e r a t u r e "  model :  

kT2~ ~ T k -  To~. (3) 
AE - -  

If in Eq. (3) we subst i tu te  the exper imen ta l  value of the ac t iva t ion  energy  for  the l ow- re s i s t i v i t y  
s amp le s ,  E = 0.09 eV, we obtain T01 = 246~ This  indicates  that  the "c r i t i ca l  t e m p e r a t u r e "  model holds 
r easonab ly  well  for  l o w - r e s i s t i v i t y  s a m p l e s ,  even  below r o o m  t e m p e r a t u r e .  Fo r  a m o r e  accura t e  quan- 
t i ta t ive  ana lys i s  we mus t  a l so  al low for  the th ickness  of the l aye r .  

We may  thus d raw the following conclusions:  

1. In an oxidized vanadium foil having a r e s i s t a n c e  of tens  or  hundreds of ohms the t e m p e r a t u r e  
dependence of the switcing vol tage may  be qual i ta t ively desc r ibed  in a ve ry  s a t i s f ac to ry  manner  (over the 
whole t e m p e r a t u r e  range  studied) within the f r a m e w o r k  of the "c r i t i ca l  t e m p e r a t u r e "  model ,  a f t e r  al low- 
ing for  the changes taking place  in the ac t iva t ion  energy of e l ec t r i ca l  conduction. In s amples  having a r e -  
s i s t ance  of the o rde r  of tens  of ki lohras ,  the "c r i t i ca l  t e m p e r a t u r e "  model  holds above r o o m  t e m p e r a t u r e  
and the " t h e r m i s t o r  model"  below. 

2. The switching p r o p e r t i e s  of the oxidized vanadium foil may  be explained by the p r e s e n c e  of a 
VO 2 phase  in the oxide l aye r ;  this  is suppor ted  by x - r a y  d i f f rac t ion  ana lys i s  and e l ec t r i ca l  m e a s u r e m e n t s .  
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N O T A T I O N  

is the switching vol tage,  V; 
is the r e s i s t a n c e  of oxide l aye r ,  ~;  
is the t h e r m a l  conductivity,  W / m .  ~ 
a r e  the c r i t i ca l  t e m p e r a t u r e ,  t e m p e r a t u r e  of the surroundings  (ambient) and t rans i t ion  
t e m p e r a t u r e  f r o m  one model  to the other ,  ~ 
is the e l ec t r i ca l  conductivity as T - -  ~, ~2 -1 "m-Z; 
is the conductivity ac t iva t ion  energy,  eV; 
is the Bo l t zmann ' s  constant,  W / m  2 .deg 4. 
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